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Dynamics of synaptically coupled integrate-and-fire-or-burst neurons
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The minimal integrate-and-fire-or-burdFB) neuron model reproduces the salient features of experimen-
tally observed thalamocorticdl'C) relay neuron response properties, including the temporal tuning of both
tonic spiking (i.e., conventional action potentialand postinhibitory rebound bursting mediated by a low-
threshold calcium current. In this paper we consider networks of IFB neurons with slow synaptic interactions
and show how the dynamics may be described with a smooth firing-rate model. When the firing rate of the IFB
model is dominated by a refractory process the equations of motion simplify and may be solved exactly.
Numerical simulations are used to show that a pair of reciprocally interacting inhibitory spiking IFB TC
neurons supports an alternating rhythm of the type predicted from the firing-rate theory. A change in a single
parameter of the IFB neuron allows it to fire a burst of spikes in response to a depolarizing signal, so that it
mimics the behavior of a reticuldRE) cell. Within a continuum model we show that a network of RE cells
with on-center excitation can support a fast traveling pulse. In contrast, a network of inhibitory TC cells is
found to support a slowly propagating lurching pulse.
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[. INTRODUCTION the cell must be hyperpolarized and then released from inhi-
bition before it can fire a burst. A number of computational
Rhythmic bursting is a hallmark feature of mammalian models have been developed that incorporate both the intrin-
thalamocortical networks during slow wave sleep, attentivesic membrane properties of RE and TC cells and their ana-
ness, and generalized seizures. One of the most studied cabmical interconnections. The work of Destexéeal. (see,
lective oscillations is that of spindling which occurs sponta-e.g., Ref.[6]) was developed based on electrophysiological
neously at the onset of sleep or drowsinésse, e.g., Ref. measurements in ferret thalamic slices and reproduces suc-
[1]). Spindle waves propagate to the cerebral cortex from theessfully the characteristics of spindle oscillations observed
thalamus where they are recorded in the electroencephalin vitro. Importantly, local axonal arborization of the TC to
gram as a 7—14 Hz oscillation. They are currently believed tRE and RE to TC projections allows oscillations to propa-
be generated through a cyclical interaction between populagate through a network. The model of Goloethal.[7] also
tions of thalamocortical and thalamic reticular or perigenicu-uses single-compartment models with detailed models of rel-
late neurons involving both the intrinsic membrane proper-evant ionic currents to reproduce many of the experimental
ties of these neurons and their anatomical interconnectionsesults fromin vitro ferret thalamic slice preparations. More-
For example, spindlelike waves have been observed in ferretver, this work highlights the possibility of waves which
brain splice preparations that preserve anatomical interagnay advance in a lurching manner. Simplifications of such
tions between perigeniculatGN) and dorsal lateral gen- circuits by Rinzelet al. [8] in which RE cells are endowed
iculate nucleugLGNd) thalamocortical neurons and travel with the rebound property has allowed reduction to a single-
with a speed of around 1 mmj2-5]. These waves are pro- layered network that still supports propagating waves. They
duced as a sequence of inhibition in thalamocortical cellsmake the observation that if the synaptic connectivity is on-
followed by rebound bursts of action potentials. Burst firingcentered, then lurching propagation occurs, but that smoothly
in relay neurons then excites PGN neurons, thereby complepropagating waves can be found when the connectivity is
ing the loop and starting the next cycle of oscillation. Simul-off-centered. Although biophysically realistic, such models
taneously, PGN neurons regulate each others firing througére typically hard to analyze. The difference between smooth
lateral inhibitory interactions. ReticuldRE) thalamic and and lurching waves has been explored analytically within a
thalamocorticaTC) neurons both possess a so-called slowsimpler integrate-and-fire network with conduction delays by
T-type calcium current that allows them to generate eitheiGolomb and Ermentrod®,10]. They show that as a discrete
rhythmic burst or tonic firing patterns. This current is asso-communication delay between neurons increases a smoothly
ciated with an influx of calcium ions and leads to a largepropagating pulse can lose stability in favor of a lurching
membrane depolarization on which more conventionalwave. Short conductance delays are considered to mimic the
spikes generated by other fast currents may ride, resulting ioff-centered networks considered by Ringelal., which es-
a burst response. Typically, RE cells respond with a burst oentially allow the cells to escape from inhibition sufficiently
action potentials in response to a brief depolarization, whilstjuickly so as to favor a smooth propagation. The full net-
TC cells respond via postinhibitory rebound. In this modework equations of Rinzedt al. have recently been studied by
Termanet al. [11] using techniques from a geometric singu-
lar perturbation theory. They derive explicit formulas when
*Electronic address: s.coombes@Iboro.ac.uk; smooth and lurching waves exist and also determine the ef-
URL: http://www.lboro.ac.uk/departments/ma/staff/coombes/ fect of network parameters on wave speed. This work relies
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partly on numerically determined properties of the single-celiknown asl; because it involve3-type C&" channels lo-
model. In this paper we return to.some of_the issues ra|.sed b¥ated in the membranes of the soma and dendrite. In the
these computational and analytical studies of thalamic nety, st mode| 1 is activated and an inflow of &a produces a
works. By working with a recently introduced minimal gepolarizing waveform, known as the low-threshold spike
model of a spiking cell possessing a sldwtype calcium (| Ts) that, in turn, usually activates a burst of conventional
current, we show that it is possible to analyze rhythmicaction potentials. When a relay cell has been relatively de-
bursting and the smooth and lurching propagation of waveg|arized for~100 ms or morel; becomes inactivated and
exactly. Our results are entirely consistent with earlier workine cell fires in tonic mode. However. after100 ms or
and open up the way for further studies of thalamocorticalyyre of relative hyperpolarization, inactivation lgfis alle-
networks from a mathematical perspective. In Sec. Il we deyjateqd and the cell fires in burst mode. A minimal model of
scribe the basic neuron model that we work with. This is thep;g process has been developed by Sreitlal. and is de-
integrate-and-fire-or-bursiFB) model recently shown by gcrined in Ref[12]. In essence, this model may be regarded
Smithet al.[12] to Ibe able to reproduce many of th_e salient 54 an integrate-and-firdF) model with the addition of a
features of experimentally observed thalamocortical relayq,, variable. The dynamics of this slow variable underlies

neuron response. This includes the temporal tuning of both,e generation of bursts and motivates the name IFB. In more
tonic spiking(conventional action potentigland postinhibi- - getajl the current balance equation for the IFB model is
tory rebound bursting mediated by a low-threshold calcium

current. As it stands, this model can fire arbitrarily fast, do

which is somewhat at odds with the well-known refractory Ca= =l =11, (1)
property of real neurons. To remedy this we adopt an ap-

proach often used with the simpler integrate-and-fire neuron

model and introduce an appropriate time-dependent threst{'e"€C IS a membrane capacitanae,the membrane volt

old. For slowly varying time-dependent input signals, Weage,l represents a synaptic current, dpe=g, (v —v.) is a
derive a firing-rate approximation of this IFB model. More- leakage current_ with constant conductargézand Ieakage
over, when the firing rate is dominated by a refractory pro_r(—?versal potentiab, . The low-threshold current s
cess(such as the one introducedve show how to exactly 9'VEN byl(t)=grh(t)(v —v7)O(v—vy), where®(. - -) is
construct solutions that are frequency locked to that of & I—!eawsude step function and the slow varigbleas dynam-
periodic stimulus. This approach is extended in Sec. I toCS:

cover synaptically interacting networks of IFB neurons. As dh

an example of the power of the firing-rate formalism, we 7(v) == —h+h.(v), ®)
exactly solve the dynamics for a simple central pattern gen- dt

erating circuit of a half-center type. A comparison with nu-

merical simulations of the spiking model shows a good quanand  h..(v)=0(vy—v)  with  7(v)=7,O(v—vy)
titative agreement for slow synapses. In Sec. IV we considet- 7, ® (v,—v). Equation(2) incorporates the deinactivation
a two-layer network of interacting TC and RE cells in two of the low-threshold C& conductance, which involves
different extremes. In the first case, we consider a oneT-type C&" channels and produces the transmembrane cur-
dimensional network of RE cells interacting through an in-rent|;. The deinactivation level of; relaxes to zero with
direct excitatory path. In the second case we consider théme constant, whenv=uv, and relaxes to unity with time
opposite scenario in which TC cells interact indirectly via anconstantr; whenv<uv,. Hence, sufficient hyperpolariza-
inhibitory path. For the excitatory RE network we are able totjon |eads to increasing values bf representing deinactiva-
construct a smooth traveling pulse, with speeds in agreemefipn of | ;. An action potential is said to occur whenever the

with direct numerical simulations. These same Simulation%embrane potentiaj reaches some thresho}q_ The set of
show that of the two possible branches of traveling pulsection potential firing times are defined by

solutions, it is the faster that is stable. The inhibitory TC
network on the other hand naturally supports lurching pulses. on=inf{tju(t)=yit=0,_ 1} (3)
Again we show a excellent agreement between theory and

numerical eXperiment, but this time it is the slower of thefor some V0|tage thresho|d/_ |mmed|ate|y after a f|r|ng

two possible lurching waves that is stable. Finally in Sec. Veyent, the system undergoes a discontinuous reset such that
we discuss extensions of our work to more realistic networks, (5 )=y ... Hence, the flow generated by the IF process

and consider how the framework we have presented is useftd jiscontinuous at the firing timeis= o, . As it stands, the

for addressing issues relating to sensory processing in thaiandard IF mechanism does not allow for the possibility of a
lamic networks. refractory process. One way to incorporate this within the IF
framework is to allow the threshold function to be time de-
pendent. Large threshold increases just after a firing event,
and subsequent decay back towards a constant-threshold
All thalamic relay cells respond to excitatory inputs in value at a raterg, can ensure that spike times are more
one of the two different modes, which are known as burstonsistent with those of real neurons. Herg,is identified
and tonic. The response mode depends on the state ofas the refractory time scale of the model neuron. We write
voltage-(and time) dependent inward Ga current that is  this refractory process in the form

II. THE MODEL AND ITS REDUCTION
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TABLE I. Standard cellular parameters for the IFB model ob- 0 1
tained from fits with experimental dafa2]. h(t)
v V(t)/ﬁ / h
Parameter Value unit N N N
-80 = o
Uy —35mV 0 1000 2000 t(ms) 3000
oL —osmy FIG. 1. An illustration of IFB output under periodic sinusoidal
c 2 pFlent inhibitory stimulation. 1=0.01, w=2 =-70, and
9 0.035 mS/crh g P TR e=am Uh ’ Yu
Ureset —50 mV ’
TC —70 mv
Z: ERB) —-60 mv U(h1u)=gLvL+gTUTh®(U(hrU)_vh)+Uuu 5
vT 120 mv gL +97hO@(v(h,u)—vy)+u
Th 20 ms
™ 100 ms Note that there are two possible solutions of Exj. We take
or 0.07 mS/cri the instantaneous firing rate of the IFB neuron to be
f(v(h,u)), where
d _
TRd_?:/:_'ydl'vf)v 7(0:):7(0})"'70 (4) f(v)=1 7+ 7In mﬂ l@(v_vo)' nggl (6)
0 L

for some large positive constant. Throughout this paper

we shall takerg=5 ms andy,=100 mV. The remaining This is recognized as the standard firing-rate response of a

standard parameters of the IFB modebtained from fits refractory IF neuron to constant forcirigee, for example,

with experimental dajaare given in Table I. Ref. [16]). Here we assume that the refractory mechanism
One of the striking abilities of the IFB neuron model is its limits the rate to at mostz*, and that to a first approxima-

ability to mimic the behavior of both TC and RE cells. For tion the IF neuron fires when=uv,. In the original IFB

TC cells we takey| >vy,, and for RE cells it is more appro- model, a burst of action potentials is expected whenever the

priate to choose | <vy, [13]. With these choices an IFB RE membrane potentiad crosses the burst thresholg, from

cell can fire a burst in response to a depolarizing signalpelow. From a dynamical systems viewpoint, it is natural to

whilst an IFB TC cell can operate in rebound maés de- adopt a description of the firing-rate model, where
scribed in Sec.)l The IFB dynamics depends strongly on the

two thresholds,, andv,, responsible for the activation of

burst and tonic spiking, respectively. Indeed, by exploiting v(h,u)=
the linearity of the model between these thresholds it has

been possible to give a complete account of mode-locked

solutions that arise in response to periodic fordihg]. This andse{0,1} is setto 1 ifv(h,u) crosses, from below and
exactapproach requires the simultaneous solution of a set of is set to 0 ifv crossesv,, from above. This provides a
nonlinear algebraic equations to keep track of firing timesconsistent mechanism for choosing between possible coex-
(one for each spike Hence, it is cumbersome when dealing isting solutions of Eq(5). The full spiking model is expected
with rhythms in which one wishes to keep track of a largeto be well approximated by the rate model in the formal limit
numbers of spikes riding an LTS. This encourages the seardd— 0.

for reduced descriptions which require less attention to the To illustrate the usefulness of such a reduction we com-
precise timing of spikes. If the dynamics fboft) and the pare the behavior of the original and reduced model to an
synaptic drivel (t) is slowas compared to that ef(t), then  oscillatory stimulus of the fornu(t) =1(1+ cos(t)). An ex-

it is natural to look for a firing-rate model that can captureample of a spiking IFB waveform that results from such a
the full spiking dynamics in a semiguantitative manpEs].  drive is shown in Fig. 1. The signalt) has a phase shit,

For later convenience, we write the synaptic input in thewith respect to some resultatt-periodic orbitv(t)=wv(t

form I (t)=u(t)(v —v,). The sign ofv, relative to the rest- +A). This means that we may write(t)=uv(h(t),u(t

ing potential determines whether a synapse is excitatory or ¢A)) for te[0,A). For simplicity we shall focus on the
inhibitory. To derive a firing-rate model, we imagine that a case that\ =27/ w (i.e., a 1:1 frequency locked statét is a
steady state value af exists that may be parametrized by simple matter to exploit the piecewise linear nature of the
andu as the solution to rebound dynamics to calculate that

givLtgrorhstoyu
g, +grhs+u

: )

he tm, OstsA"
h(t)=y _ _ 8
(0 he A%/m e (t=aM)m 1 1 o (t-A")m  AT<t<A ®
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1 g Here u;(t) represents the shape of the train of postsynaptic
h conductance changes induced at neurday the arrival of
08 action potentials from other neurons. Timgh firing time of
0.6 | the jth neuron is given t?yrﬁn. The paramet.erwij may bg
used to specify appropriate neuronal architectures, wiilst
04 | ] >0 is some overall scale parameter for synaptic interaction
strength. For clarity, we shall focus on the case that the func-
0.2 1 tion 7(t) describes a so-calledr function with #7(t)
= a’t exp(—at) and7(t) =0 for t=<0. Particularly, for simu-
0 70 50 30 -10 10 30 v lation purposes it is convenient to writg as the solution to
FIG. 2. Phase space trajectories of periodic solutions in the spik- 1. .
ing and rate IFB model. Parameters as in Fig. 1. Eui_yi_ui '
for someA , <A. The functionh(t) is periodically extended 1. 11
outside its principal domain. The value b&h(0) is given T Y (11)
by
with y; discontinuously updated according tg;—y;
1—e (A-A%yn +tow;e at ti_mes<r‘m. To obtain a firing—rat_e model we con-
h(A, ,A)= — —. (99  sider the limit of slow synapses, whese ! is large as com-
1-e A /e (A=4a7)/7, pared to other natural time scales of the network, so that the

input to each neuron,(t)=u;(t)(vi—v,), varies slowly as
The two unknowns\ * and ¢ may be found by the simulta- compared to all t.h_ezi A reduction of Eq.(10) is naturally
neous solution of the two equation¢A*)=v, andv(A)  Obtained after writing it in the form
=vy. The numerical solution of this system of equations "
may be used to calculate regions in parameter space where ui(t):gz w;; 77(3)2 5(5_t+ggn)ds_ (12)
periodic solutions exist. In Fig. 2, we show the phase space i 0 m
trajectory of a periodic orbit for both the IFB spiking and
rate models. The spiking orbit is calculated numerically,
whilst the orbit in the rate model is obtained in closed form.
The orbit of the rate model provides amvelopefor the

We then replace the spike train in Ed2) with some smooth
function of the steady state voltage value of neuyoithe
natural choice for this function is the firing-rate function

spiking dynamics. Although it cannot track voltage spikes, itg!ven _by Eq.(6). The f|r|r_19-rate model is then completely
does accurately capture the duration of bursting causing  SPecified by the dynamics fdn;, given by Eq.(2), the

a high firing rate as well as tracking the nonspiking part of Stéady state voltage(h; ,u;) given by Eq.(5) for each neu-
the orbit very well. With more work it is also possible to "N @nd the synaptic input with

obtain the spiking orbit in closed form, but we shall not o

pursue this here. A detailed study of the full spiking model ui(t)zgz wij | n(s)f(vj(t—s))ds, (13
for such a periodic drive can be found in Rgf4]. Impor- ] 0

tantly, it is very easy to obtain quantities suchAa’s, within ivalentl

the firing-rate framework, as a function of system parameterg r equivaiently
without recourse to direct numerical simulations. For ex- 1.
ample, using this approach* is predicted to be a mono- —U;=Yy;— U,

tonically decreasing function of the stimulus frequency. An «

examination ofA* for the spiking model shows that this 1

trend i_s respected w.ith increasing agreement between rate —yi=gz wiif(vj)—yi. (14
and spike models &3 is decrease¢hot shown. The useful- a i

ness of the firing-rate reduction at the single-neuron level o . ]

encourages the extension of this approach to networks dilthough it is possible to analyze the dynamics of the full
synaptically interacting IFB neurons. This is the subject ofSPiking model explicitly using the techniques in Rgf4],

the following section. the firing-rate model is much preferred. It is continuous in
time and does not require precise knowledge about spike
timing.
ll. DISCRETE NETWORKS To illustrate the usefulness of the firing-rate reduction for

Consider a network of IFB neurons with state variables>Y"aPtC Interactions, we consider a concrete problem in

(v h), i=1 N and synaptic conductances of the form rhythmogenesis, namely, the generation of an alternating
e e rhythm in a network with reciprocal inhibitory synaptic cou-

pling. We shall take as our modehalf-center oscillatoitwo
Ui () = Wi t—ol). 10 neuron TC II_:B network, where each of the |dent|c_al neurons
i g; ”zm: 7 m) (10 in isolation is nonoscillatory. The neuronal architecture is

041910-4



DYNAMICS OF SYNAPTICALLY COUPLED INTEGRATE . .. PHYSICAL REVIEW E 67, 041910(2003

300 400

FIG. 3. A half-center oscillation in a network of two reciprocal FIG. 5. Contour plot of solutions with fixed* in the (g,v,)

inhibitory TC IFB cells. Parameters are=0.1, g=5, v, parameter plane for the firing rate half-center oscillator. Parameters
=—100, andC=0.2. as in Fig. 3.

specified byw;;=1— §;; . For an appropriate choice gfand 9
vy, the rebound current can be activated leading to a burst of u(t)= —Q(t—A/2,min(A,,t—A/2)), te[A/2,3A/2),
activity. This burst causes a sequence of inhibitory postsyn- R (15)
aptic potential4IPSP$ in the partner neuron driving it be-
low v}, and leading to an increase in the value of its associywhere
ated rebound variable. Uponreleasefrom inhibition, when
the total IPSP has decayed, the partner neuron crosses the a
bursting threshola, from below and will generate a burst of Q(t.a)= J; 7(t=s)ds. (16)
its own if its rebound variable is sufficiently large. The pro-
cess may then repeai infinitum An example of such a Note that outside its natural domain we periodically extend
rhythm is shown in Fig. 3. In Fig. 4 we show a plot of the u(t). For ana function, we have that
rhythm in the ¢,h) plane. The corresponding simulations of
the firing-rate model show similar patterns of activity, espe- Qt,a)=e " I[1+a(t-a)]-e “[1+at]. (17
cially for small C. N

In the firing-rate framework, the form of the half-center 1€ three unknowns\,A™,A, may then be found by the
solution is given by (t) =v(t) =v,(t— A/2), whereo(t) is S|mu+ltaneous solution of the three tiquatlar(ssa):vﬁ,
defined on[0,A) and is periodically extended outside this V(A )=vn and wv(A)=vy, (A>A7). Here, uv(i)
domain. The period can be determined from the time spent = (h(t),u(t)) from Eq. (7), VX'th u given by Eq.(19), h by
above and below,,, which we denote ad *, respectively. - (8), ands=1 forte[0,A"] and is zero otherwise. The
The simultaneous solution o{A) =v,, andv (A*)=v,, then numerical solution of this system of equations may b(_e used
determines\ = A" + A —. For convenience we choose an ori- {0 calculate the parameter sets for half-center oscillations of

gin of time such that at=0 v, crosses, from below. For a given period or given burst duration. In Fig. 5 we present

a general firing-rate function, it is hard problem to calculatethe results of such a calculation giving the locus of points in

A*. However, we note that the model is relatively insensi.Lhe (g,lé_u) g’ﬁalaf_‘fr‘ﬁffe;_ planehwhereh haE'C(‘jnter OSC'”aSOF‘S
tive to the detailed shape 6f(since interspike intervals are Nave afixed ©. This figure shows that the time spent above

largelv qoverned by the refractory processd rather the Uh €an be increased by either decreasiggor increasingg,
timge t%a%v spends a{)ove or belowgy vF\)/hicE we denote\ , . both of which describe an increased level of mutual inhibi-

To make analytic progress we consider the replacemerion- The techniques that we have described above are also
f(v)HT—le)(va )peSpected to hold in the IimiCpHO rﬁjeally suited to study mixed networks of both RE and TC
R o) :

Assuming thatA/2>A , and that only the most recent burst IFB_negrons. In part.icular it allows us to examine one 9f the
L : . _ . basic circuits found in thalamus, namely, an RE-TC pair. For
is influential, the variablel;=u may be written as . . ; .

a recent overview of the behavior of this and more extensive
thalamocortical circuits we refer the reader to the book by
Destexhe and Sejnowské]. It is worth to briefly consider a
reciprocal RE-TC circuit, where the inhibitory synapse onto
the TC cell is GABA, mediated and the excitatory one onto
the RE cell AMPA mediated. This sets the scene for the
discussion of large networks that will be presented in the
following section. Rather than using labéls 1,2, we shall
simply use subscript (RE) and (TC) to distinguish between
the two cell types and denote the corresponding synaptic
reversal potentials asyypa andvgaga, respectively. An ex-
ample of the type of rhythm that can be generated by this

FIG. 4. Periodic orbit in ¢,h) phase plane for the IFB spike and RE-TC network is shown in Fig. 6. We summarize the be-
rate half-center oscillator. Parameters as in Fig. 3. havior of the oscillating system as follows. The TC cell fires
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o0 v v RE laycr
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v
20

excitation inhibition

! AMPA excitatiop
“oniquyul vgvO

O 0 0 00 0 0 0 = U - © 00 OO0 O 0O

TC layer

(
i

-100
0 1000 t 2000 FIG. 7. A two-layered network of TC and RE cells with recip-

) o » rocal interactions. The TC cells excite the RE cells with AMPA
FIG. 6. Dynamics of an RE-TC pair within the firing-rate for- mediated synapses. The RE cells inhibit the TC cells with GABA
malism. Parameter values age=2, a=0.01,vgasa=—100, and  mediated synapses.
vamea=0. For simplicity, we have assumed that the time course

and strength of AMPA and GABAsynapses are the same. reduction to a single-layered network. Guided by the behav-
jor of the simple RE-TC pair described in Sec. lll, we con-

sider a scenario in which the RE and TC layers are slaved
gogether. Then on one hand we may imagine RE cells to feel

upon release from inhibition. There is then a sudden buildu
of activity in the RE cell, which fires a burst of spikes. Even-

wally, the spike packet generated by the RE cell termlnatean indirect spread of excitatignia the inhibitory interaction

ashge decays back to zero. During this period the TC cell 'Swith TC cells and on the other hand for TC cells to feel an

inhibited. The intrinsic dynamics of the RE cell is such thatindirect spread of inhibitior(via the excitatory interaction
vy, is crossed from above anltze increases towards one P y

with RE cellg. In either case we have only to consider an

rea(_jy to r<_a|ease another barrage of s.plk_e S upon recevinge ctive single-layer network that can be described with an
excitatory input caused by release of inhibition of the TC.

cell. This process is free to repeat over, leading to the genl_ntegral equation of the form
eration of a periodic oscillation. A basic observation that we
wish to make is that the natural rhythm of the circuit in- u(x.t) = f’" W )f“’ (8)f(o(x—y.t—s)dyds
volves the firing of the RE cell just after the onset of firing in =9 o y 0 K v Y y

the TC cell. Hence, in some sense the circuit can generate a (18

nearly synchronous activity between an RE and TC cell. We
shall use this observation in the following section to considelcl-he above equation may be regarded as the continuous space

the reduction of two-layer reciprocally i_nteracting networkscounterpart of Eq(13). The effective spread of connections
of RE and TC cells to single layers of either purely RE cells,inin the network is described with the synaptic footprint

or purely TC cells. functionw(y). This neural field model is supplemented with
the dynamics for the rebound varialiéx,t) and the for-
IV. CONTINUOUS NETWORKS mula for the steady state voltag®). For a recent discussion

A number of continuum neural field models have beenOf the link between spiking- and firing-rate neural field mod-

developed with the aim of understanding the mechanisms di'S We refer the reader to R¢1L9]. We shall now present an
pattern formation and wave propagation in spatially extende@nalysis of waves in this model for the two cases described
neural sheets. They are often motivated by statistical averagP0Vve:(i) an excitatory RE network an@) an inhibitory TC

ing over ensembles of neurons with similar functional prop-"€twork.

erties, as well as temporal averaging over spike trains from

individual neurons. Most of these models can trace their A. Smooth waves in RE networks

roots back to the work of Wilson and Cowgh7] and Amari Th ist d fructi f i i
[18] and are often written as integrodifferential equations. In € existence and construction ot smoothly propagating
this section we shall consider a two-layer model of interact-Vaves n neural f|e|d_theor|es have been considered by sev-
ing RE-TC IFB cells using a neural field description. TheeraI authors. In particular, we refer the reader to work in

particular network we are interested in has the same charagefsi[lg_za' FoIIowmg the approag:h In thes_,e Papers, we
teristics as that considered by Golorebal. [7] and is de- consider the construction of waves in an excitatory layer of

picted in Fig. 7. A continuous layer of RE cells inhibits a RE IFB cells. Within the firing-rate framework, we consider
continuous layer of TC cells with some spreading synapticeutions of the formfev(x,t)=fou(t—x/c)O(1—x/c),
footprint. This TC layer in turn acts back on the RE IayerWr1ere we identifyc with a wave speed. If we adopt a trav-
with a spread of excitatory connections. For simplicity we€ling wave frame wherg=ct—x, thenu(x,t)=u(¢) and
ignore interactions within a layer. Motivated by a previousWe may write

work [7,8,11], we expect a mathematical analysis of a two- o

layered IFB neural field model to yield solutions that de- u(§)=gf w(E' —EE(&'c)dé’, (29
scribe both smooth and lurching waves. To gain insight into 0

the dynamics of such waves, but avoiding a full mathemati-

cal treatment of a two-layered system, we focus here on ahere
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FIG. 8. An example of a solitary wave in an RE network with  FIG. 9. Speed of a solitary pulse in an excitatory RE network.
excitatory synaptic feedback obtained as an exact solution to thparameters as in Fig. 8. Crosses denote the results of numerical
Heaviside firing-rate equations. Herg,=—55, «=1.0, g=0.1,  simulations in MATLAB done on a network of size &0using a
v,=0, ando=1. mesh of 2 grid points. In all simulations, the synaptic inputs are

computed using the MATLAB convolution function and all equa-
¢ tions are evolved forward in time using ODE45. The steady state
E('f):f n(§—s)fou(s)ds. (200 value of voltagev=v(h,u) is obtained by numerically evolving
0 Eq. (1) with very smallC, so that compared with the dynamics for

We shall now consider the construction of a solitary pulse™ v 1S afastvariable.

solution for the case that the firing-rate function is a Heavi- . ) ,

side. We denote the duration of firing By, , the time thah  €duivalent to the input considered by many other authors
is deinactivated byA and choose an origin in the traveling Within the context of spiking If9,10,26—29 and ¢ neuron
wave frame at the point where the system first starts flﬂﬂgnet""orkS [30-32. The speed of the wave is then simply
An illustration of such a solution is given in Fig. 8. In this determined byi(0)=wvy,, which is the type of condition that

h imolv th _ min(A,.8)/ ., with occurs in the theory of traveling pulsésingle spiké for IF
;?/seenvxtlg Eﬂl_?lzl)rhggr thEet(gz]oiSe(g min(A.€)/ 7 Q networks. In this case, Bressldf£8,29 and Golomb and

Ermentrou{9,10] have already shown that it is the fast wave
1 that is stable. However, with the inclusion of discrete delays,
wx) =5~ exp(—[x|/a), (21)  y(t)— n(t—74), a fast pulse can destabilize in favor of a
lurching pulse. In the following section, we show how lurch-
the solution(19) may be expressed in closed form by evalu- ing waves may originate in an inhibitory TC network without
ating some appropriate integrals. The details of this calculadiscrete delays.
tion are presented in the Appendix. Exploiting the piecewise
linear nature of the rebound dynamics shows that the dynam- B. Lurching waves in TC networks

ics for h has a simple form given by When neurons can fire via postinhibitory rebound, it is

1 £<0 well known that this can lead to lurching waves of activity
' propagating through an inhibitory netwofB]. A lurching
h(&)= g &em 0<¢<A (220 wave does not travel with a constant profileg., there is no
+ traveling wave framealthough it is possible to identify a
1-(1-hye & dlem — &=A, lurching speed. Rather, the propagating wave recruits groups

of cells in discrete steps. The leading edge of active cells

whereh=exp(-A/cr,). The speed of the traveling pulse is inhibits some cluster of cells ahead of(itepending on the
defined by the three conditiong0)=vy,, v(Ag)=vy, and  size of the synaptic footprint Inhibited cells(ahead of the
v(A)=vp. Numerical solution of these three equationswave must wait until they are released from inhibition be-
shows that the speed of a solitary wave in an excitatory REore they can, in turn, fire. The mathematical analysis of such
network is relatively insensitive to the choice gfor o. nonsmooth waves has been undertaken by Teretah us-
However, as expected, there is a strong dependeneg, on ing the techniques of geometric singular perturbation theory
In Fig. 9, we plotc=c(vy), showing the wave speadas a [11]. For models that arise as reduced models for thalamic
function ofuvy,. With increasing,, fast and slow branch as neurons these authors have been able to construct very good
are seen to annihilate leading to propagation failure of theestimates for various properties of lurching pulses, such as
solitary pulse. Asvy, approaches | from above, one sees the time between successive release events. In this section,
waves of increasing speed. Direct numerical simulations of ave show how an exact analysis of lurching waves can be
network in MATLAB show excellent agreement with the performed for a minimal thalamic network built out of in-
theoretical predictions and are plotted as crosses in Fig. Sibitory IFB TC cells. In common with other more compli-
Moreover, these simulations show that it is the faster of thecated models of thalamic neurons, IFB TC neurons have the
two branches that is stable. ability to fire via postinhibitory rebound. For mathematical

We note that under the replacemdnb (£)=6(¢§), valid  convenience, we work with the Heaviside firing-rate function
in the extreme limitA ,— 7r—0, then Eq.(19 becomes and consider
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FIG. 11. Period of a solitary lurching pulse in an inhibitory TC

T, I A network as a function ob,. Parameters as in Fig. 8, but with
! - =0.1, g=1.0, andv,=—100. Crosses denote the results of nu-

merical simulations done on a network of si¥e/2 using a mesh
> of N=28 grid points.

FIG. 10. A diagram of an idealized solitary lurching pulse show- Eq. (25) is independent aot. Assume to a first approximation
ing the four unknowns that parametrize the solution. Herepre-  thatwv (x,t)=v(0;) for xe (0,L), then three of the unknowns
sents the size of a clustér, the period of the lurchA, the time  are determined by the simultaneous solution v@D,T,)
spent firing, andA the duration of inhibition where the rebound =3, (0T +A,)=v,, and v(0,T.—A)=v,. The first
variableh is increasing. Gray regions indicate where the system icondition determines the time of release from inhibition, the
firing. second determines the firing duration, and the third deter-
mines the time of onset of inhibition. To obtain a final con-
straint we note that the assumption of simultaneous firing
within a cluster is not strictly tru¢unlessL <o¢/2) and that
v(x,t)#v(0}t) for L>¢/2 [which can be seen from EQ5)

We denote the size of a cluster involved in a lurchlbyFor  and(26)]. We define the size of a cluster using the constraint
simplicity we shall only consider lurching pulses where con-y (L, T,)=v,. SinceW(L) takes its maximal value fot
secutive active clusters are adjacent to each other. We sup-g/2 we see that there is a solution with= o/2. A numeri-
pose that to a first approximation neurons fa (OL) are  cal solution of these four simultaneous equations is presented
simultaneously released from inhibition and start firing atin Fig. 11. Lurching waves are found fof,<v, , with T
time t=T_. The next group withxe (L,2L) fires whent . asy,—uv, . Moreover,T, decreases with decreasing
=2T_. We define the firing duration of a cluster Ag (i.e., and a solution is lost in a saddle-node bifurcation. Direct
the time spent above,) and the duration of inhibitiotime  numerical simulations performed in MATLAB show excel-
spent below, before releaseas A. An illustration of this  lent agreement with the theory. Note that as in the work of
type of lurching pulse is shown in Fig. 10. Assuming that theTermanet al. we set self-inhibition to be zero in simulations
system starts at rest with(x,0)=0, then h(x,T )=1 to better see the emergence of lurching waves from initial

1
W(X)=E®(U—|X|). (23

_exp(_A/T;)EFfor xe (0L). Hence, fort>T, data(which we take to be in the form of a localized depo-
larization of the system at one endNote that in their analy-
h(x,t)=he T/ xe(0OL). (24)  Sis, Termanet al. partly rely on data from numerical solu-

tions to construct lurching speed estimates and hence cannot
To calculate the synaptic conductand®), we assume that obtain unstable solution branches like we have managed
for xe (0,L) andt>0 the dominant contribution arises from here. If we introduce a lurch velocity=L/T,, we see from
the activity onxe (—L,0) forte (0,A,). The expression for Fig. 11 that in contrast to waves in RE systems it is the slow

Eq. (18) then takes the simpléseparableform wave that is stable. In Fig. 12, we illustrate tAgtincreases
with g, which is also consistent with the results of Terman
u(x,t)=T%Q(t,min(t,Ag))W(x), xe(0L), t>0, etal.
(25 V. DISCUSSION
where In this paper, we have presented a firing-rate reduction of

the IFB neuron model. When the firing-rate output of the
(26) neuron is dominated by a refractory process we have shown

that the model can be exactly solved for a number of impor-

tant cases. We have illustrated this by considering simple
Hence, using Eq(7) we have a closed form expression for central pattern generating networks of synaptically interact-
v(x,t) in terms of the four unknownsg, T, , A, andA,. ing IFB neurons. Direct numerical simulations have shown
Note that if 2. <o, thenW(x)=L/20 andu(x,t) given by that, for slow synapses, there is a good agreement between

L/20, X+L<o
(0—x)20, Xx+L>0.

X+L
W(x) = j w(y)dy=|
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60 APPENDIX

The traveling pulse in an excitatory RE network may be
constructed from EQ.(19) using the result thatE(¢)

FIG. 12. Period of a solitary lurching pulse in an inhibitory TC = Q(&,Min(4,.8)/ 7 [valid when the firing-rate function is
network as a function of the strength of conductance. Parameters & Heaviside, i.e.,fov(§)=0(£§)O(A,—¢)/7g]. Consider

0 20 40 60 g 80 100

in Fig. 11 withv,,= — 70. first the case tha<0. Using Eq.(21) we have that
g © e .
spiking- and firing-rate IFB networks. In light of the ability ~ u(§)=5— fo e~ & -9l0Q(¢' e, min(¢',A »)/c)d¢’
R

of IFB neurons to replicate the dynamics of both TC and RE
cells this opens up the way for a mathematical study of tha- get”
lamic circuits. One step in this direction has been presented
here, with a study of traveling waves in continuous firing-
rate networks of IFB neurons. We have been able to con-
struct a smooth fast traveling pulse in a network of excitatory + f
RE cells and a slow lurching pulse in a network of inhibitory
TC cells. Our results are consistent with previous studies oBy writing Eq. (17) in the form
more detailed models of neural networks with sldvtype
calcium currents. Importantly, the mathematical tractability Q(t,a)=0(t—a)—O(t), (A2)
of our model network will allow a number of further studies.

Although, for clarity of exposition, we have focused on Where
single-layer networks, the techniques we have described gen-
eralize naturally to multilayer structures. Indeed a more com- o(t)=
plete study of a truly two-layered RE-TC network may shed

light on the properties of mixed-wave solutions where, forit is then relatively straightforworward to evaluate the inte-

example, a lurching front may leave behind a periodic wavegrals in Eq.(A1). These may be expressed in terms of the
in its wake. The study of two-layered networks is also Offunction W(a,b) andG. (a,b,d), where

interest from a sensory processing point of view. It is well

known that sensory thalamic nuclei can act as a state- L e bl
dependentgateway between the sensory periphery and W(a,b)= J; e d¢'=ofe”*7—e 7]  (A4)
higher cortical centerd33]. A two-layered RE-TC IFB

firing-rate network can be used as a testing ground for thgnd

effects of synaptic footprint shapes on network filtering prop-
erties. In particular, the simplicity of the model should allow
for the calculation of network response to a spatiotemporal
pattern. For example, within the context of the visual system

( JerefSIIUQ(S'/C,é’/C)df’

207R

mef"”Q(f’/c,A(,/c)dg’J. (A1)

Ay

1—a—|e (A3)

da

G.(a,b,d)= fbe*f’/(’(g(( + ¢ —d)/c)de’

one could consider retiongeniculate input to TC cells by con- =y.{e” e "V 1-a(dFa)/lcx y. /c]
volving an experimentally relevant illumination profilsuch — e Ploga(dTh)ier ] — o (dFh)/c* y. Ic]}.
as a drifting gratingwith the spatiotemporal receptive field -

of a retinal ganglion cell. This may allow one to go beyond (A5)

the traditional linear response analysis of geniculate circuiti|ere
[34]. The work in this paper also raises the interesting math-

ematical question of wave stability. There has been some 1 1 «
recent progress on the asymptotic stability of traveling waves —=—x—, (AB6)
in integrodifferential equations that, when generalized to in- Y- o ¢C

clude rebound currents, may answer the question for th
smooth waves seen in excitatory RE netwdik3,35. How-
ever, the stability of lurching waves is likely to require the
devello'pment of new analytical techniques 'to handle the fact d1=W(0A,)—G,(0A,,0)+G.(A,,2,A,

that it is not possible to move to a comoving frame. These

and related issues are all topics of current investigation. =G, (Ay,»,0). (A7)

Equation (A1) then takes the formu(&)=g e’ ¢,/207x
with ¢4 given by
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In a similar fashion, it may be shown that(&)
=g¢,(§)/20 7 for 0<E&<A 4 with

$2(£)=W(0,§) =G_(0£,— &) +W(0,A,—&)
_G+(01A0_§1_§)+G+(AH_ évmrA(}_g)
_G+(AG_§1001_§)! (AS)

PHYSICAL REVIEW E 67, 041910 (2003

andu(&)=g¢3(&)/207g for £>A,, where

#3(§)=G_(0£-4,4)=§)~G_(0£—4y,— &)
TW(E-Ay,6)—G_(§-44,6,—8)

+G+(O,°O,A0_§)_G+(O,w,_g). (Ag)
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