
PHYSICAL REVIEW E 67, 041910 ~2003!
Dynamics of synaptically coupled integrate-and-fire-or-burst neurons

S. Coombes*
Department of Mathematical Sciences, Loughborough University, Leicestershire LE11 3TU, United Kingdom

~Received 2 December 2002; published 28 April 2003!

The minimal integrate-and-fire-or-burst~IFB! neuron model reproduces the salient features of experimen-
tally observed thalamocortical~TC! relay neuron response properties, including the temporal tuning of both
tonic spiking ~i.e., conventional action potentials! and postinhibitory rebound bursting mediated by a low-
threshold calcium current. In this paper we consider networks of IFB neurons with slow synaptic interactions
and show how the dynamics may be described with a smooth firing-rate model. When the firing rate of the IFB
model is dominated by a refractory process the equations of motion simplify and may be solved exactly.
Numerical simulations are used to show that a pair of reciprocally interacting inhibitory spiking IFB TC
neurons supports an alternating rhythm of the type predicted from the firing-rate theory. A change in a single
parameter of the IFB neuron allows it to fire a burst of spikes in response to a depolarizing signal, so that it
mimics the behavior of a reticular~RE! cell. Within a continuum model we show that a network of RE cells
with on-center excitation can support a fast traveling pulse. In contrast, a network of inhibitory TC cells is
found to support a slowly propagating lurching pulse.

DOI: 10.1103/PhysRevE.67.041910 PACS number~s!: 87.10.1e
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I. INTRODUCTION

Rhythmic bursting is a hallmark feature of mammali
thalamocortical networks during slow wave sleep, attenti
ness, and generalized seizures. One of the most studied
lective oscillations is that of spindling which occurs spon
neously at the onset of sleep or drowsiness~see, e.g., Ref.
@1#!. Spindle waves propagate to the cerebral cortex from
thalamus where they are recorded in the electroenceph
gram as a 7–14 Hz oscillation. They are currently believed
be generated through a cyclical interaction between pop
tions of thalamocortical and thalamic reticular or perigenic
late neurons involving both the intrinsic membrane prop
ties of these neurons and their anatomical interconnecti
For example, spindlelike waves have been observed in fe
brain splice preparations that preserve anatomical inte
tions between perigeniculate~PGN! and dorsal lateral gen
iculate nucleus~LGNd! thalamocortical neurons and trav
with a speed of around 1 mm/s@2–5#. These waves are pro
duced as a sequence of inhibition in thalamocortical c
followed by rebound bursts of action potentials. Burst firi
in relay neurons then excites PGN neurons, thereby comp
ing the loop and starting the next cycle of oscillation. Sim
taneously, PGN neurons regulate each others firing thro
lateral inhibitory interactions. Reticular~RE! thalamic and
thalamocortical~TC! neurons both possess a so-called sl
T-type calcium current that allows them to generate eit
rhythmic burst or tonic firing patterns. This current is ass
ciated with an influx of calcium ions and leads to a lar
membrane depolarization on which more conventio
spikes generated by other fast currents may ride, resultin
a burst response. Typically, RE cells respond with a burs
action potentials in response to a brief depolarization, wh
TC cells respond via postinhibitory rebound. In this mo
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the cell must be hyperpolarized and then released from i
bition before it can fire a burst. A number of computation
models have been developed that incorporate both the in
sic membrane properties of RE and TC cells and their a
tomical interconnections. The work of Destexheet al. ~see,
e.g., Ref.@6#! was developed based on electrophysiologi
measurements in ferret thalamic slices and reproduces
cessfully the characteristics of spindle oscillations obser
in vitro. Importantly, local axonal arborization of the TC t
RE and RE to TC projections allows oscillations to prop
gate through a network. The model of Golombet al. @7# also
uses single-compartment models with detailed models of
evant ionic currents to reproduce many of the experime
results fromin vitro ferret thalamic slice preparations. More
over, this work highlights the possibility of waves whic
may advance in a lurching manner. Simplifications of su
circuits by Rinzelet al. @8# in which RE cells are endowed
with the rebound property has allowed reduction to a sing
layered network that still supports propagating waves. Th
make the observation that if the synaptic connectivity is o
centered, then lurching propagation occurs, but that smoo
propagating waves can be found when the connectivity
off-centered. Although biophysically realistic, such mode
are typically hard to analyze. The difference between smo
and lurching waves has been explored analytically within
simpler integrate-and-fire network with conduction delays
Golomb and Ermentrout@9,10#. They show that as a discret
communication delay between neurons increases a smoo
propagating pulse can lose stability in favor of a lurchi
wave. Short conductance delays are considered to mimic
off-centered networks considered by Rinzelet al., which es-
sentially allow the cells to escape from inhibition sufficient
quickly so as to favor a smooth propagation. The full n
work equations of Rinzelet al.have recently been studied b
Termanet al. @11# using techniques from a geometric sing
lar perturbation theory. They derive explicit formulas wh
smooth and lurching waves exist and also determine the
fect of network parameters on wave speed. This work re
©2003 The American Physical Society10-1
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partly on numerically determined properties of the single-c
model. In this paper we return to some of the issues raise
these computational and analytical studies of thalamic
works. By working with a recently introduced minima
model of a spiking cell possessing a slowT-type calcium
current, we show that it is possible to analyze rhythm
bursting and the smooth and lurching propagation of wa
exactly. Our results are entirely consistent with earlier wo
and open up the way for further studies of thalamocorti
networks from a mathematical perspective. In Sec. II we
scribe the basic neuron model that we work with. This is
integrate-and-fire-or-burst~IFB! model recently shown by
Smith et al. @12# to be able to reproduce many of the salie
features of experimentally observed thalamocortical re
neuron response. This includes the temporal tuning of b
tonic spiking~conventional action potentials! and postinhibi-
tory rebound bursting mediated by a low-threshold calci
current. As it stands, this model can fire arbitrarily fa
which is somewhat at odds with the well-known refracto
property of real neurons. To remedy this we adopt an
proach often used with the simpler integrate-and-fire neu
model and introduce an appropriate time-dependent thr
old. For slowly varying time-dependent input signals, w
derive a firing-rate approximation of this IFB model. Mor
over, when the firing rate is dominated by a refractory p
cess~such as the one introduced!, we show how to exactly
construct solutions that are frequency locked to that o
periodic stimulus. This approach is extended in Sec. III
cover synaptically interacting networks of IFB neurons.
an example of the power of the firing-rate formalism, w
exactly solve the dynamics for a simple central pattern g
erating circuit of a half-center type. A comparison with n
merical simulations of the spiking model shows a good qu
titative agreement for slow synapses. In Sec. IV we cons
a two-layer network of interacting TC and RE cells in tw
different extremes. In the first case, we consider a o
dimensional network of RE cells interacting through an
direct excitatory path. In the second case we consider
opposite scenario in which TC cells interact indirectly via
inhibitory path. For the excitatory RE network we are able
construct a smooth traveling pulse, with speeds in agreem
with direct numerical simulations. These same simulatio
show that of the two possible branches of traveling pu
solutions, it is the faster that is stable. The inhibitory T
network on the other hand naturally supports lurching puls
Again we show a excellent agreement between theory
numerical experiment, but this time it is the slower of t
two possible lurching waves that is stable. Finally in Sec
we discuss extensions of our work to more realistic netwo
and consider how the framework we have presented is us
for addressing issues relating to sensory processing in
lamic networks.

II. THE MODEL AND ITS REDUCTION

All thalamic relay cells respond to excitatory inputs
one of the two different modes, which are known as bu
and tonic. The response mode depends on the state
voltage- ~and time-! dependent inward Ca21 current that is
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known asI T because it involvesT-type Ca21 channels lo-
cated in the membranes of the soma and dendrite. In
burst mode,I T is activated and an inflow of Ca21 produces a
depolarizing waveform, known as the low-threshold sp
~LTS! that, in turn, usually activates a burst of convention
action potentials. When a relay cell has been relatively
polarized for;100 ms or more,I T becomes inactivated an
the cell fires in tonic mode. However, after;100 ms or
more of relative hyperpolarization, inactivation ofI T is alle-
viated and the cell fires in burst mode. A minimal model
this process has been developed by Smithet al. and is de-
scribed in Ref.@12#. In essence, this model may be regard
as an integrate-and-fire~IF! model with the addition of a
slow variable. The dynamics of this slow variable underl
the generation of bursts and motivates the name IFB. In m
detail the current balance equation for the IFB model is

C
dv
dt

52I L2I T2I , ~1!

whereC is a membrane capacitance,v the membrane volt-
age,I represents a synaptic current, andI L5gL(v2vL) is a
leakage current with constant conductancegL and leakage
reversal potentialvL . The low-threshold Ca21 current is
given byI T(t)5gTh(t)(v2vT)Q(v2vh), whereQ(•••) is
a Heaviside step function and the slow variableh has dynam-
ics:

th~v !
dh

dt
52h1h`~v !, ~2!

and h`(v)5Q(vh2v) with th(v)5th
2Q(v2vh)

1th
1Q(vh2v). Equation~2! incorporates the deinactivatio

of the low-threshold Ca21 conductance, which involves
T-type Ca21 channels and produces the transmembrane
rent I T . The deinactivation level ofI T relaxes to zero with
time constantth

2 whenv>vh and relaxes to unity with time
constantth

1 when v,vh . Hence, sufficient hyperpolariza
tion leads to increasing values ofh, representing deinactiva
tion of I T . An action potential is said to occur whenever t
membrane potentialv reaches some thresholdvu . The set of
action potential firing times are defined by

sn5 inf$tuv~ t !>g;t>sn21% ~3!

for some voltage thresholdg. Immediately after a firing
event, the system undergoes a discontinuous reset such
v(sn

1)5v reset. Hence, the flow generated by the IF proce
is discontinuous at the firing timest5sn . As it stands, the
standard IF mechanism does not allow for the possibility o
refractory process. One way to incorporate this within the
framework is to allow the threshold function to be time d
pendent. Large threshold increases just after a firing ev
and subsequent decay back towards a constant-thres
value at a ratetR , can ensure that spike times are mo
consistent with those of real neurons. Here,tR is identified
as the refractory time scale of the model neuron. We w
this refractory process in the form
0-2
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tR

dg

dt
52g1vu , g~sn

1!5g~sn!1g0 ~4!

for some large positive constantg0. Throughout this pape
we shall taketR55 ms andg05100 mV. The remaining
standard parameters of the IFB model~obtained from fits
with experimental data! are given in Table I.

One of the striking abilities of the IFB neuron model is
ability to mimic the behavior of both TC and RE cells. F
TC cells we takevL.vh , and for RE cells it is more appro
priate to choosevL,vh @13#. With these choices an IFB RE
cell can fire a burst in response to a depolarizing sign
whilst an IFB TC cell can operate in rebound mode~as de-
scribed in Sec. I!. The IFB dynamics depends strongly on t
two thresholdsvh and vu , responsible for the activation o
burst and tonic spiking, respectively. Indeed, by exploiti
the linearity of the model between these thresholds it
been possible to give a complete account of mode-loc
solutions that arise in response to periodic forcing@14#. This
exactapproach requires the simultaneous solution of a se
nonlinear algebraic equations to keep track of firing tim
~one for each spike!. Hence, it is cumbersome when dealin
with rhythms in which one wishes to keep track of a lar
numbers of spikes riding an LTS. This encourages the se
for reduced descriptions which require less attention to
precise timing of spikes. If the dynamics forh(t) and the
synaptic driveI (t) is slow as compared to that ofv(t), then
it is natural to look for a firing-rate model that can captu
the full spiking dynamics in a semiquantitative manner@15#.
For later convenience, we write the synaptic input in t
form I (t)5u(t)(v2vu). The sign ofvu relative to the rest-
ing potential determines whether a synapse is excitator
inhibitory. To derive a firing-rate model, we imagine that
steady state value ofv exists that may be parametrized byh
andu as the solution to

TABLE I. Standard cellular parameters for the IFB model o
tained from fits with experimental data@12#.

Parameter Value unit

vu 235 mV
vL 265 mV
C 2 mF/cm2

gL 0.035 mS/cm2

v reset 250 mV
vh ~TC! 270 mv
vh ~RE! 260 mv

vT 120 mv
th

2 20 ms
th

1 100 ms
gT 0.07 mS/cm2
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v~h,u!5
gLvL1gTvThQ~v~h,u!2vh!1vuu

gL1gThQ~v~h,u!2vh!1u
. ~5!

Note that there are two possible solutions of Eq.~5!. We take
the instantaneous firing rate of the IFB neuron to
f „v(h,u)…, where

f ~v !5H tR1t lnFv2v reset

v2vu
G J 21

Q~v2vu!, t5
C

gL
. ~6!

This is recognized as the standard firing-rate response
refractory IF neuron to constant forcing~see, for example,
Ref. @16#!. Here we assume that the refractory mechani
limits the rate to at mosttR

21 , and that to a first approxima
tion the IF neuron fires whenv5vu . In the original IFB
model, a burst of action potentials is expected whenever
membrane potentialv crosses the burst thresholdvh from
below. From a dynamical systems viewpoint, it is natural
adopt a description of the firing-rate model, where

v~h,u!5
gLvL1gTvThs1vuu

gL1gThs1u
, ~7!

andsP$0,1% is set to 1 ifv(h,u) crossesvh from below and
s is set to 0 if v crossesvh from above. This provides a
consistent mechanism for choosing between possible c
isting solutions of Eq.~5!. The full spiking model is expected
to be well approximated by the rate model in the formal lim
C→0.

To illustrate the usefulness of such a reduction we co
pare the behavior of the original and reduced model to
oscillatory stimulus of the formu(t)5I „11cos(vt)…. An ex-
ample of a spiking IFB waveform that results from such
drive is shown in Fig. 1. The signalu(t) has a phase shiftf,
with respect to some resultantD-periodic orbit v(t)5v(t
1D). This means that we may writev(t)5v„h(t),u(t
2fD)… for tP@0,D). For simplicity we shall focus on the
case thatD52p/v ~i.e., a 1:1 frequency locked state!. It is a
simple matter to exploit the piecewise linear nature of
rebound dynamics to calculate that

FIG. 1. An illustration of IFB output under periodic sinusoid
inhibitory stimulation. I 50.01, v52p, vh5270, and vu

52100.
h~ t !5H h̄ e2t/th
2

, 0<t<D1

h̄ e2D1/th
2

e2(t2D1)/th
1

112e2(t2D1)/th
1

, D1,t,D
~8!
0-3
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for someD1,D. The functionh(t) is periodically extended
outside its principal domain. The value ofh̄[h(0) is given
by

h̄~D1 ,D!5
12e2(D2D1)/th

1

12e2D1/th
2

e2(D2D1)/th
1 . ~9!

The two unknownsD1 andf may be found by the simulta
neous solution of the two equationsv(D1)5vh and v(D)
5vh . The numerical solution of this system of equatio
may be used to calculate regions in parameter space w
periodic solutions exist. In Fig. 2, we show the phase sp
trajectory of a periodic orbit for both the IFB spiking an
rate models. The spiking orbit is calculated numerica
whilst the orbit in the rate model is obtained in closed for
The orbit of the rate model provides anenvelopefor the
spiking dynamics. Although it cannot track voltage spikes
does accurately capture the duration of bursting~by causing
a high firing rate! as well as tracking the nonspiking part
the orbit very well. With more work it is also possible t
obtain the spiking orbit in closed form, but we shall n
pursue this here. A detailed study of the full spiking mod
for such a periodic drive can be found in Ref.@14#. Impor-
tantly, it is very easy to obtain quantities such asD1, within
the firing-rate framework, as a function of system parame
without recourse to direct numerical simulations. For e
ample, using this approachD1 is predicted to be a mono
tonically decreasing function of the stimulus frequency.
examination ofD1 for the spiking model shows that thi
trend is respected with increasing agreement between
and spike models asC is decreased~not shown!. The useful-
ness of the firing-rate reduction at the single-neuron le
encourages the extension of this approach to network
synaptically interacting IFB neurons. This is the subject
the following section.

III. DISCRETE NETWORKS

Consider a network of IFB neurons with state variab
(v i ,hi), i 51, . . . ,N and synaptic conductances of the for

ui~ t !5g(
j

wi j (
m

h~ t2sm
j !. ~10!

FIG. 2. Phase space trajectories of periodic solutions in the s
ing and rate IFB model. Parameters as in Fig. 1.
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Here ui(t) represents the shape of the train of postsyna
conductance changes induced at neuroni by the arrival of
action potentials from other neurons. Themth firing time of
the j th neuron is given bysm

j . The parameterswi j may be
used to specify appropriate neuronal architectures, whilsg
.0 is some overall scale parameter for synaptic interac
strength. For clarity, we shall focus on the case that the fu
tion h(t) describes a so-calleda function with h(t)
5a2t exp(2at) andh(t)50 for t<0. Particularly, for simu-
lation purposes it is convenient to writeui as the solution to

1

a
u̇i5yi2ui ,

1

a
ẏi52yi , ~11!

with yi discontinuously updated according toyi→yi

1gwi j a at timessm
j . To obtain a firing-rate model we con

sider the limit of slow synapses, wherea21 is large as com-
pared to other natural time scales of the network, so that
input to each neuron,I i(t)5ui(t)(v i2vu), varies slowly as
compared to all thev i . A reduction of Eq.~10! is naturally
obtained after writing it in the form

ui~ t !5g(
j

wi j E
0

`

h~s!(
m

d~s2t1sm
j !ds. ~12!

We then replace the spike train in Eq.~12! with some smooth
function of the steady state voltage value of neuronj. The
natural choice for this function is the firing-rate functio
given by Eq.~6!. The firing-rate model is then completel
specified by the dynamics forhi , given by Eq. ~2!, the
steady state voltagev(hi ,ui) given by Eq.~5! for each neu-
ron, and the synaptic input with

ui~ t !5g(
j

wi j E
0

`

h~s! f „v j~ t2s!…ds, ~13!

or equivalently

1

a
u̇i5yi2ui ,

1

a
ẏi5g(

j
wi j f ~v j !2yi . ~14!

Although it is possible to analyze the dynamics of the f
spiking model explicitly using the techniques in Ref.@14#,
the firing-rate model is much preferred. It is continuous
time and does not require precise knowledge about sp
timing.

To illustrate the usefulness of the firing-rate reduction
synaptic interactions, we consider a concrete problem
rhythmogenesis, namely, the generation of an alterna
rhythm in a network with reciprocal inhibitory synaptic cou
pling. We shall take as our model ahalf-center oscillatortwo
neuron TC IFB network, where each of the identical neuro
in isolation is nonoscillatory. The neuronal architecture

k-
0-4
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DYNAMICS OF SYNAPTICALLY COUPLED INTEGRATE- . . . PHYSICAL REVIEW E 67, 041910 ~2003!
specified bywi j 512d i j . For an appropriate choice ofg and
vu , the rebound current can be activated leading to a burs
activity. This burst causes a sequence of inhibitory posts
aptic potentials~IPSPs! in the partner neuron driving it be
low vh and leading to an increase in the value of its asso
ated rebound variableh. Uponreleasefrom inhibition, when
the total IPSP has decayed, the partner neuron crosse
bursting thresholdvh from below and will generate a burst o
its own if its rebound variable is sufficiently large. The pr
cess may then repeatad infinitum. An example of such a
rhythm is shown in Fig. 3. In Fig. 4 we show a plot of th
rhythm in the (v,h) plane. The corresponding simulations
the firing-rate model show similar patterns of activity, esp
cially for small C.

In the firing-rate framework, the form of the half-cent
solution is given byv1(t)5v(t)5v2(t2D/2), wherev(t) is
defined on@0,D) and is periodically extended outside th
domain. The periodD can be determined from the time spe
above and belowvh , which we denote asD6, respectively.
The simultaneous solution ofv(D)5vh andv(D1)5vh then
determinesD5D11D2. For convenience we choose an o
gin of time such that att50 v1 crossesvh from below. For
a general firing-rate function, it is hard problem to calcula
D6. However, we note that the model is relatively insen
tive to the detailed shape off ~since interspike intervals ar
largely governed by the refractory process! and rather the
time thatv spends above or belowvu , which we denoteDu .
To make analytic progress we consider the replacem
f (v)→tR

21Q(v2vu), expected to hold in the limitC→0.
Assuming thatD/2.Du and that only the most recent bur
is influential, the variableu1[u may be written as

FIG. 3. A half-center oscillation in a network of two reciproc
inhibitory TC IFB cells. Parameters area50.1, g55, vu

52100, andC50.2.

FIG. 4. Periodic orbit in (v,h) phase plane for the IFB spike an
rate half-center oscillator. Parameters as in Fig. 3.
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u~ t !5
g

tR
Q„t2D/2,min~Du ,t2D/2!…, tP@D/2,3D/2!,

~15!

where

Q~ t,a!5E
0

a

h~ t2s!ds. ~16!

Note that outside its natural domain we periodically exte
u(t). For ana function, we have that

Q~ t,a!5e2a(t2a)@11a~ t2a!#2e2at@11at#. ~17!

The three unknownsD,D1,Du may then be found by the
simultaneous solution of the three equationsv(Du)5vu ,
v(D1)5vh and v(D)5vh (D.D1). Here, v(t)
5v„h(t),u(t)… from Eq. ~7!, with u given by Eq.~15!, h by
Eq. ~8!, ands51 for tP@0,D1# and is zero otherwise. The
numerical solution of this system of equations may be u
to calculate the parameter sets for half-center oscillation
a given period or given burst duration. In Fig. 5 we pres
the results of such a calculation giving the locus of points
the (g,vu) parameter plane where half-center oscillatio
have a fixedD1. This figure shows that the time spent abo
vh can be increased by either decreasingvu or increasingg,
both of which describe an increased level of mutual inhi
tion. The techniques that we have described above are
ideally suited to study mixed networks of both RE and T
IFB neurons. In particular it allows us to examine one of t
basic circuits found in thalamus, namely, an RE-TC pair. F
a recent overview of the behavior of this and more extens
thalamocortical circuits we refer the reader to the book
Destexhe and Sejnowski@6#. It is worth to briefly consider a
reciprocal RE-TC circuit, where the inhibitory synapse on
the TC cell is GABAA mediated and the excitatory one on
the RE cell AMPA mediated. This sets the scene for
discussion of large networks that will be presented in
following section. Rather than using labelsi 51,2, we shall
simply use subscript (RE) and (TC) to distinguish betwe
the two cell types and denote the corresponding syna
reversal potentials asvAMPA andvGABA , respectively. An ex-
ample of the type of rhythm that can be generated by
RE-TC network is shown in Fig. 6. We summarize the b
havior of the oscillating system as follows. The TC cell fir

FIG. 5. Contour plot of solutions with fixedD1 in the (g,vu)
parameter plane for the firing rate half-center oscillator. Parame
as in Fig. 3.
0-5
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upon release from inhibition. There is then a sudden build
of activity in the RE cell, which fires a burst of spikes. Eve
tually, the spike packet generated by the RE cell termina
ashRE decays back to zero. During this period the TC cel
inhibited. The intrinsic dynamics of the RE cell is such th
vh is crossed from above andhRE increases towards on
ready to release another barrage of spikes upon recei
excitatory input caused by release of inhibition of the T
cell. This process is free to repeat over, leading to the g
eration of a periodic oscillation. A basic observation that
wish to make is that the natural rhythm of the circuit i
volves the firing of the RE cell just after the onset of firing
the TC cell. Hence, in some sense the circuit can genera
nearly synchronous activity between an RE and TC cell.
shall use this observation in the following section to consi
the reduction of two-layer reciprocally interacting networ
of RE and TC cells to single layers of either purely RE ce
or purely TC cells.

IV. CONTINUOUS NETWORKS

A number of continuum neural field models have be
developed with the aim of understanding the mechanism
pattern formation and wave propagation in spatially exten
neural sheets. They are often motivated by statistical ave
ing over ensembles of neurons with similar functional pro
erties, as well as temporal averaging over spike trains fr
individual neurons. Most of these models can trace th
roots back to the work of Wilson and Cowan@17# and Amari
@18# and are often written as integrodifferential equations.
this section we shall consider a two-layer model of intera
ing RE-TC IFB cells using a neural field description. T
particular network we are interested in has the same cha
teristics as that considered by Golombet al. @7# and is de-
picted in Fig. 7. A continuous layer of RE cells inhibits
continuous layer of TC cells with some spreading synap
footprint. This TC layer in turn acts back on the RE lay
with a spread of excitatory connections. For simplicity w
ignore interactions within a layer. Motivated by a previo
work @7,8,11#, we expect a mathematical analysis of a tw
layered IFB neural field model to yield solutions that d
scribe both smooth and lurching waves. To gain insight i
the dynamics of such waves, but avoiding a full mathem
cal treatment of a two-layered system, we focus here o

FIG. 6. Dynamics of an RE-TC pair within the firing-rate fo
malism. Parameter values areg52, a50.01, vGABA52100, and
vAMPA50. For simplicity, we have assumed that the time cou
and strength of AMPA and GABAA synapses are the same.
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reduction to a single-layered network. Guided by the beh
ior of the simple RE-TC pair described in Sec. III, we co
sider a scenario in which the RE and TC layers are sla
together. Then on one hand we may imagine RE cells to
an indirect spread of excitation~via the inhibitory interaction
with TC cells! and on the other hand for TC cells to feel a
indirect spread of inhibition~via the excitatory interaction
with RE cells!. In either case we have only to consider
effective single-layer network that can be described with
integral equation of the form

u~x,t !5gE
2`

`

w~y!E
0

`

h~s! f „v~x2y,t2s!…dyds.

~18!

The above equation may be regarded as the continuous s
counterpart of Eq.~13!. The effective spread of connection
within the network is described with the synaptic footpri
functionw(y). This neural field model is supplemented wi
the dynamics for the rebound variableh(x,t) and the for-
mula for the steady state voltage~7!. For a recent discussion
of the link between spiking- and firing-rate neural field mo
els we refer the reader to Ref.@19#. We shall now present an
analysis of waves in this model for the two cases descri
above:~i! an excitatory RE network and~ii ! an inhibitory TC
network.

A. Smooth waves in RE networks

The existence and construction of smoothly propagat
waves in neural field theories have been considered by
eral authors. In particular, we refer the reader to work
Refs. @19–25#. Following the approach in these papers, w
consider the construction of waves in an excitatory layer
RE IFB cells. Within the firing-rate framework, we consid
solutions of the form f +v(x,t)5 f +v(t2x/c)Q(t2x/c),
where we identifyc with a wave speed. If we adopt a trav
eling wave frame wherej5ct2x, then u(x,t)5u(j) and
we may write

u~j!5gE
0

`

w~j82j!E~j8/c!dj8, ~19!

where

e

FIG. 7. A two-layered network of TC and RE cells with recip
rocal interactions. The TC cells excite the RE cells with AMP
mediated synapses. The RE cells inhibit the TC cells with GABA

mediated synapses.
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E~j!5E
0

j

h~j2s! f +v~s!ds. ~20!

We shall now consider the construction of a solitary pu
solution for the case that the firing-rate function is a Hea
side. We denote the duration of firing byDu , the time thath
is deinactivated byD and choose an origin in the travelin
wave frame at the point where the system first starts firi
An illustration of such a solution is given in Fig. 8. In th
case we have simply thatE(j)5Q„j,min(Du ,j)…/tR , with Q
given by Eq.~16!. For the choice

w~x!5
1

2s
exp~2uxu/s!, ~21!

the solution~19! may be expressed in closed form by eva
ating some appropriate integrals. The details of this calc
tion are presented in the Appendix. Exploiting the piecew
linear nature of the rebound dynamics shows that the dyn
ics for h has a simple form given by

h~j!5H 1, j<0

e2j/cth
2

, 0,j,D

12~12h̄!e2(j2D)/cth
1

, j>D,

~22!

whereh̄5exp(2D/cth
2). The speed of the traveling pulse

defined by the three conditionsv(0)5vh , v(Du)5vu , and
v(D)5vh . Numerical solution of these three equatio
shows that the speed of a solitary wave in an excitatory
network is relatively insensitive to the choice ofg or s.
However, as expected, there is a strong dependence onvh .
In Fig. 9, we plotc5c(vh), showing the wave speedc as a
function of vh . With increasingvh , fast and slow branch a
are seen to annihilate leading to propagation failure of
solitary pulse. Asvh approachesvL from above, one see
waves of increasing speed. Direct numerical simulations
network in MATLAB show excellent agreement with th
theoretical predictions and are plotted as crosses in Fig
Moreover, these simulations show that it is the faster of
two branches that is stable.

We note that under the replacementf +v(j)5d(j), valid
in the extreme limitDu→tR→0, then Eq.~19! becomes

FIG. 8. An example of a solitary wave in an RE network wi
excitatory synaptic feedback obtained as an exact solution to
Heaviside firing-rate equations. Here,vh5255, a51.0, g50.1,
vu50, ands51.
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equivalent to the input considered by many other auth
within the context of spiking IF@9,10,26–29# andu neuron
networks @30–32#. The speed of the wave is then simp
determined byu(0)5vh , which is the type of condition tha
occurs in the theory of traveling pulses~single spike! for IF
networks. In this case, Bressloff@28,29# and Golomb and
Ermentrout@9,10# have already shown that it is the fast wa
that is stable. However, with the inclusion of discrete dela
h(t)→h(t2td), a fast pulse can destabilize in favor of
lurching pulse. In the following section, we show how lurc
ing waves may originate in an inhibitory TC network witho
discrete delays.

B. Lurching waves in TC networks

When neurons can fire via postinhibitory rebound, it
well known that this can lead to lurching waves of activi
propagating through an inhibitory network@8#. A lurching
wave does not travel with a constant profile,~i.e., there is no
traveling wave frame! although it is possible to identify a
lurching speed. Rather, the propagating wave recruits gro
of cells in discrete steps. The leading edge of active c
inhibits some cluster of cells ahead of it~depending on the
size of the synaptic footprint!. Inhibited cells~ahead of the
wave! must wait until they are released from inhibition b
fore they can, in turn, fire. The mathematical analysis of su
nonsmooth waves has been undertaken by Termanet al. us-
ing the techniques of geometric singular perturbation the
@11#. For models that arise as reduced models for thala
neurons these authors have been able to construct very
estimates for various properties of lurching pulses, such
the time between successive release events. In this sec
we show how an exact analysis of lurching waves can
performed for a minimal thalamic network built out of in
hibitory IFB TC cells. In common with other more compl
cated models of thalamic neurons, IFB TC neurons have
ability to fire via postinhibitory rebound. For mathematic
convenience, we work with the Heaviside firing-rate functi
and consider

he
FIG. 9. Speed of a solitary pulse in an excitatory RE netwo

Parameters as in Fig. 8. Crosses denote the results of nume
simulations in MATLAB done on a network of size 50s using a
mesh of 28 grid points. In all simulations, the synaptic inputs a
computed using the MATLAB convolution function and all equ
tions are evolved forward in time using ODE45. The steady s
value of voltagev5v(h,u) is obtained by numerically evolving
Eq. ~1! with very smallC, so that compared with the dynamics fo
u, v is a fast variable.
0-7
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w~x!5
1

2s
Q~s2uxu!. ~23!

We denote the size of a cluster involved in a lurch byL. For
simplicity we shall only consider lurching pulses where co
secutive active clusters are adjacent to each other. We
pose that to a first approximation neurons forxP(0,L) are
simultaneously released from inhibition and start firing
time t5TL . The next group withxP(L,2L) fires whent
52TL . We define the firing duration of a cluster asDu ~i.e.,
the time spent abovevu) and the duration of inhibition~time
spent belowvh before release! as D. An illustration of this
type of lurching pulse is shown in Fig. 10. Assuming that t
system starts at rest withh(x,0)50, then h(x,TL)51
2exp(2D/th

1)[h̄ for xP(0,L). Hence, fort.TL ,

h~x,t !5h̄ e2(t2TL)/th
2

, xP~0,L !. ~24!

To calculate the synaptic conductance~18!, we assume tha
for xP(0,L) andt.0 the dominant contribution arises from
the activity onxP(2L,0) for tP(0,Du). The expression for
Eq. ~18! then takes the simple~separable! form

u~x,t !5
g

tR
Q„t,min~ t,Du!…W~x!, xP~0,L !, t.0,

~25!

where

W~x!5E
x

x1L

w~y!dy5H L/2s, x1L,s

~s2x!/2s, x1L.s.
~26!

Hence, using Eq.~7! we have a closed form expression f
v(x,t) in terms of the four unknownsL, TL , D, and Du .
Note that if 2L,s, thenW(x)5L/2s andu(x,t) given by

FIG. 10. A diagram of an idealized solitary lurching pulse sho
ing the four unknowns that parametrize the solution. HereL repre-
sents the size of a cluster,TL the period of the lurch,Du the time
spent firing, andD the duration of inhibition where the reboun
variableh is increasing. Gray regions indicate where the system
firing.
04191
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t

Eq. ~25! is independent ofx. Assume to a first approximation
thatv(x,t)5v(0,t) for xP(0,L), then three of the unknown
are determined by the simultaneous solution ofv(0,TL)
5vh , v(0,TL1Du)5vu , and v(0,TL2D)5vh . The first
condition determines the time of release from inhibition, t
second determines the firing duration, and the third de
mines the time of onset of inhibition. To obtain a final co
straint we note that the assumption of simultaneous fir
within a cluster is not strictly true~unlessL,s/2) and that
v(x,t)Þv(0,t) for L.s/2 @which can be seen from Eq.~25!
and~26!#. We define the size of a cluster using the constra
v(L,TL)5vh . Since W(L) takes its maximal value forL
5s/2 we see that there is a solution withL5s/2. A numeri-
cal solution of these four simultaneous equations is prese
in Fig. 11. Lurching waves are found forvh,vL , with TL
→` asvh→vL . Moreover,TL decreases with decreasingvh
and a solution is lost in a saddle-node bifurcation. Dire
numerical simulations performed in MATLAB show exce
lent agreement with the theory. Note that as in the work
Termanet al. we set self-inhibition to be zero in simulation
to better see the emergence of lurching waves from ini
data~which we take to be in the form of a localized dep
larization of the system at one end!. Note that in their analy-
sis, Termanet al. partly rely on data from numerical solu
tions to construct lurching speed estimates and hence ca
obtain unstable solution branches like we have mana
here. If we introduce a lurch velocityv5L/TL , we see from
Fig. 11 that in contrast to waves in RE systems it is the sl
wave that is stable. In Fig. 12, we illustrate thatTL increases
with g, which is also consistent with the results of Term
et al.

V. DISCUSSION

In this paper, we have presented a firing-rate reduction
the IFB neuron model. When the firing-rate output of t
neuron is dominated by a refractory process we have sh
that the model can be exactly solved for a number of imp
tant cases. We have illustrated this by considering sim
central pattern generating networks of synaptically intera
ing IFB neurons. Direct numerical simulations have sho
that, for slow synapses, there is a good agreement betw

-

is

FIG. 11. Period of a solitary lurching pulse in an inhibitory T
network as a function ofvh . Parameters as in Fig. 8, but witha
50.1, g51.0, andvu52100. Crosses denote the results of n
merical simulations done on a network of sizeNs/2 using a mesh
of N528 grid points.
0-8



y
RE
ha
te
g
o
or
ry

lity
s.
n

ge
m
ed
fo
v
o
el
at
nd

th
p
w
r

em
on

d
nd
ui
th
m

ve
in
th

e
fa
s

g
his
ant

be

e-
he

C
rs

DYNAMICS OF SYNAPTICALLY COUPLED INTEGRATE- . . . PHYSICAL REVIEW E 67, 041910 ~2003!
spiking- and firing-rate IFB networks. In light of the abilit
of IFB neurons to replicate the dynamics of both TC and
cells this opens up the way for a mathematical study of t
lamic circuits. One step in this direction has been presen
here, with a study of traveling waves in continuous firin
rate networks of IFB neurons. We have been able to c
struct a smooth fast traveling pulse in a network of excitat
RE cells and a slow lurching pulse in a network of inhibito
TC cells. Our results are consistent with previous studies
more detailed models of neural networks with slowT-type
calcium currents. Importantly, the mathematical tractabi
of our model network will allow a number of further studie

Although, for clarity of exposition, we have focused o
single-layer networks, the techniques we have described
eralize naturally to multilayer structures. Indeed a more co
plete study of a truly two-layered RE-TC network may sh
light on the properties of mixed-wave solutions where,
example, a lurching front may leave behind a periodic wa
in its wake. The study of two-layered networks is also
interest from a sensory processing point of view. It is w
known that sensory thalamic nuclei can act as a st
dependentgateway between the sensory periphery a
higher cortical centers@33#. A two-layered RE-TC IFB
firing-rate network can be used as a testing ground for
effects of synaptic footprint shapes on network filtering pro
erties. In particular, the simplicity of the model should allo
for the calculation of network response to a spatiotempo
pattern. For example, within the context of the visual syst
one could consider retiongeniculate input to TC cells by c
volving an experimentally relevant illumination profile~such
as a drifting grating! with the spatiotemporal receptive fiel
of a retinal ganglion cell. This may allow one to go beyo
the traditional linear response analysis of geniculate circ
@34#. The work in this paper also raises the interesting ma
ematical question of wave stability. There has been so
recent progress on the asymptotic stability of traveling wa
in integrodifferential equations that, when generalized to
clude rebound currents, may answer the question for
smooth waves seen in excitatory RE networks@23,35#. How-
ever, the stability of lurching waves is likely to require th
development of new analytical techniques to handle the
that it is not possible to move to a comoving frame. The
and related issues are all topics of current investigation.

FIG. 12. Period of a solitary lurching pulse in an inhibitory T
network as a function of the strength of conductance. Paramete
in Fig. 11 withvh5270.
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APPENDIX

The traveling pulse in an excitatory RE network may
constructed from Eq.~19! using the result thatE(j)
5Q„j,min(Du ,j)…/tR @valid when the firing-rate function is
a Heaviside, i.e.,f +v(j)5Q(j)Q(Du2j)/tR]. Consider
first the case thatj,0. Using Eq.~21! we have that

u~j!5
g

2stR
E

0

`

e2(j82j)/sQ„j8/c,min~j8,Du!/c…dj8

5
gej/s

2stR
H E

0

Du
e2j8/sQ~j8/c,j8/c!dj8

1E
Du

`

e2j8/sQ~j8/c,Du /c!dj8J . ~A1!

By writing Eq. ~17! in the form

Q~ t,a!5Q̃~ t2a!2Q̃~ t !, ~A2!

where

Q̃~ t !5F12a
d

daGe2at, ~A3!

it is then relatively straightforworward to evaluate the int
grals in Eq.~A1!. These may be expressed in terms of t
function W(a,b) andG6(a,b,d), where

W~a,b!5E
a

b

e2j8/sdj85s@e2a/s2e2b/s# ~A4!

and

G6~a,b,d!5E
a

b

e2j8/sQ̃„~6j82d!/c…dj8

5g6$e2a/sea(d7a)/c@12a~d7a!/c6g6 /c#

2e2b/sea(d7b)/c@12a~d7b!/c6g6 /c#%.

~A5!

Here

1

g6
5

1

s
6

a

c
. ~A6!

Equation ~A1! then takes the formu(j)5g ej/sf1/2stR
with f1 given by

f15W~0,Du!2G1~0,Du,0!1G1~Du ,`,Du!

2G1~Du ,`,0!. ~A7!

as
0-9
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In a similar fashion, it may be shown thatu(j)
5gf2(j)/2stR for 0<j<Du with

f2~j!5W~0,j!2G2~0,j,2j!1W~0,Du2j!

2G1~0,Du2j,2j!1G1~Du2j,`,Du2j!

2G1~Du2j,`,2j!, ~A8!
s

nc

A

eu

u

04191
andu(j)5gf3(j)/2stR for j.Du , where

f3~j!5G2~0,j2Du ,Du2j!2G2~0,j2Du ,2j!

1W~j2Du ,j!2G2~j2Du ,j,2j!

1G1~0,̀ ,Du2j!2G1~0,̀ ,2j!. ~A9!
gh,
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